Lab Reports > Lab 6 - Pure Pursuit of Happyness

On this page v

Lab 6 - Pure Pursuit of Happyness

Path Planning

Introduction

[Carolina]

This lab built off of our previous accomplishments in the localization lab to implement a powerful ability on our robot — navigation. Navigating
our robot in an environment involves finding a path to take through the environment and then successfully following this path to reach a goal
destination. To accomplish this path-planning, we implemented two path-finding algorithms, A% and RRT'*, and then used the pure pursuit
method for following the generated paths. Integrating the two to give our robot the capacity to create and execute paths was as simple as
running both of the algorithms simultaneously. We evaluated each algorithm in simulation and then tested the combination of the algorithms
on hardware, finding that our robot was able to successfully generate paths and reach a goal node in a reasonable amount of time. We found
that there is room for tuning in our code, as well as a need to further refine our localization code from the previous lab to work better with pure
pursuit. However, our navigation approach was overall successful, and will be greatly helpful to us in the final challenge as our robot learns to

drive safely in a unique “city” environment.

Technical Implementation

A*
[Ishita]

Moving a robot between two points in space is a daunting task. One of the ways we approached this problem was by adapting an algorithm
we'd heard of in previous classes: A*. Ax is a graph algorithm that finds a path between two points, and optimizes the path to minimize its
length. To discretize a map and turn it into a graph, we used each pixel on the map as a node as shown in Figure 1, and considered there to be
edges between each node and its four neighbors. For a given point (a:, y) in pixel coordinates, the four neighbors were the elements of

(zx —1,y),(z+1,y), (z,y — 1), (z,y + 1) that were within the map’s bounds. The decision to not include diagonal neighbors was made
to reduce computation time, and because the difference in distance between a diagonal map and one that stepped one edge in each direction

was small enough to be negligible.

Figure 1: This diagram shows the discretization of a map into pixel squares.

https://rss2022-5.github.io/website/docs/labs/lab6

Our implementation keeps track of the minimum distance between the start node and every other node in a dictionary, and updates the
dictionary every time a shorter path is found between the two nodes. The algorithm generates the four neighbors of the current node and
adds the ones that have not yet been visited to an open set. It then treats this set as a priority queue, and uses a heuristic to determine which
should be chosen next. The heuristic sums the distance between the node and its current neighbor with the linear distance between the
neighbor and the goal to optimally pick which neighbors should be explored next. This heuristic was used over alternatives such as Dubins
curves because experimentation showed that linear distance worked better with discretization. After this, the node is added to a visited set to
ensure that it is not revisited. In this manner, each node is visited exactly once, reducing computation time. When the algorithm chose a path
that reached the goal node, this was chosen as the optimal path since the algorithm had already been optimizing at every step.

Figure 2: Sample A* map between two points

In practice, the A* maps chosen sometimes contained very small line segments as shown in figure 2, which would make it difficult for the car
to actually follow the paths. Some of these issues were addressed with creative manipulations of the map. We found that dilating the map
made the robot less likely to crash into walls by giving it a margin. In addition, we eroded the map to rid it of extraneous points before
converting the map into a graph and running the algorithm on it.

RRT
[Tiffany]

An alternate type of path planning algorithm is a sampling based algorithm, which randomly chooses points in the map to pass through and
then checks for collisions, speeding up the process by avoiding the need to generate and search through a graph of the entire map.

We chose to implement RRT * as our sampling based algorithm. Our implementation had several iterations as we optimized the code. At first,
we started with a simple RRT implementation: generating a random point, generating a path between that and the nearest point already in
the graph, seeing if that path reaches the end, and if not, continuing to generate the tree. While this method was fast, as it stopped as soon as
a path to the end was found, it also allowed for non-optimal paths. To improve this, we created what we called RRT+, which continued
generating paths until we had sampled a given number of points, stored the distances of all the paths that made it to the end and chose the
best from among those. Finally, we implemented RRT'* which updated the paths as it generated points by trying to “steal” the shortest path
of previous nodes located within a box centered at the new node. This created much more optimal paths, but at the cost of speed.

R.S,L,

Figure 3: Examples of possible Dubins curves which guarantee optimal possible paths

By changing the cost metric for distance to Dubins curves, we improved the results of our path planning algorithm. Dubins curves allow us to
find the optimal path for a forward-only car by saying that the shortest path for such a car is some 3-turn combination of 3 possible
directions: Left, Right, and Straight. In order to create smooth curves which were possible given the robot's current position and robot’s
movement capabilities, we used these as our cost metric in the RRT implementation. This made the path smoother and only represented
paths that the car could actually take which was beneficial for pure pursuit.

Comparing Search and Sample Algorithms

We chose to use the RRT algorithm as it was faster than A* and implemented Dubins curves as the cost function, making it more practical
to test with and creating only possible paths. By using Dubins curves as the cost function, the path-planning algorithm was able to
incorporate the dynamics of the car and generate only paths the car would possibly be able to take. RRT works faster, in O(nlogn), by
avoiding the need to create a graph of the entire space and then subsequently search for it as A* must, taking O(4") time. In this sense,
RRT is better for large spaces like the Stata basement which would be expensive to do with A*. Our RRT implementation avoids the need
to search once the tree is created by storing parent pointers, speeding up the implementation. While A% generates optimal paths, RRT *
generates optimal paths as the number of samples approaches infinity. In this case, when we strongly limit the number of samples, Ax
created more optimal paths than RRT'. As the number of samples increases, however, RRT becomes increasingly optimal while not taking
too long to run. As a result, RRT" s benefits outweighed the potential drawbacks of having potentially less optimal paths.

Pure Pursuit
[Vedang]

The pure pursuit portion of the code combines all of the components of this project. Our pure pursuit implementation is similar to that
implemented in Lab 4: a simple two step algorithm that repeats indefinitely. The first step is to determine a point to drive to and the second
step is to simply drive to the point.

Pure Pursuit: Determining the Point

Given a discrete trajectory, determining the point to drive to is the most challenging of the two steps. To solve this problem, we form a circle
around the car, the radius being the value self. lookahead. The first step of the algorithm is to drive to the closest segment that intersects
the lookahead circle. This value is constantly calculated throughout the robot's motion with the use of efficient numpy operations. We
approximate line-segments with infinite lines, and calculate the shortest distance to the given line segmentation using the point to line vector
formula. This is clearly outlined in the diagram below, where arrows are represented by trajectories formed by path planning algorithms, and
the dotted line represents the shortest distance.

AT T

Figure 4: In Pure Pursuit, the first step is to calculate the distance to all of the segments, shown by the dotted line above.

Once we have picked a segment of interest, we need to find a point on the segment. This will become the segments that we will drive toward.
This is calculated by solving a quadratic equation, by equating the equations of a line and a circle, which results in two solutions. We pick the
solution that takes us forward on the trajectory. This math problem is generalized to the diagram that we see below.

Figure 5 In Pure Pursuit, the second step is to calculate the intersections of a segment on the self.lookahead circle, defined by the

radius 7 above. If the car were facing right, we would drive to the intersection closer to p;

With creative freedoms in our implementation, we include a second “back-up” lookahead if the first one fails. This backup lookahead remains
at the start of the closest segment that lies at a distance of 1.5* se1f. lookahead distance. This second lookahead point is essential for
navigating dense trajectories, where the normal lookahead distance may fail. In the animation below, at the end of the trajectory, you can see
that the first lookahead point, shown by the red dot, lies outside of the trajectory. The racecar can navigate to the correct finish point because

it lies on the correct finish trajectory. This is how we determine the point, now we must just drive to it.

Pure Pursuit: Driving to the Point

This last part is arguably the easiest of all. Once we have determined a point to drive we must control the steering angle. If the absolute value
of the steering angle lies outside of 0.25 radians, we decrease the velocity of the racecar by a factor of 1-self.steering_angle. This
ensures an accurate trajectory following a variety of turns. This information is best conveyed in the diagram below, which outlines the formula

for the steering angle and how to drive to the point of interest.

Pure Pursuit controller for a car-like robot (Il)

aircraft ~_

desired path " reference point
iR
_ —1 (2Lsinn :
0 = tan (I, Lon

L: “length” of the car
L1: lookahead distance

Figure 6: This figure shows how step 2 of pure pursuit works. Once a point is chosen, the steering angle is changed to the equation

above in order to drive to the point.

Evaluation

RRTx* and Ax Evaluation

[Carolina]

To evaluate RRT ' in simulation, we looked at the overall distance of our path, the time it took to generate the path, and the smoothness of
the path. Ideally, we would generate shorter, smoother paths in less time. Smoothness is especially important because in real life, we can
travel a smooth path faster than a jagged path. Our car has to slow down to make sharp turns, but can take curves at a higher speed.

We facilitated the error-logging process in this lab by creating a simple error logging script with methods to write to a file. We called these
methods in our code to record the full distance of the generated path, the time it took to generate (found by subtracting rospy.get_time()

at the start of the path generation from the time at the end), and the full trajectory of the path, which we would evaluate later.

To run tests repeatedly using the same positions for both algorithms, we decided not to use RVIZ tools (giving it poses in the exact same
position would not have been possible). Instead, we created a script based off of pose_init_pub.py, called destination_pub.py, which
published a goal node directly to the robot. We first ran pose_init_pub with a position of (0, 0, O) to initialize the robot, and then used
destination_pub.py to publish one of three positions in different locations on the Stata basement map (which were found previously using

RVIZ tools). Publishing a position to the robot started the path-planning algorithm, and we repeated the trial for each position.
[Quinn]

Ax was evaluated the same way as RRT'; we examined the length and curvature of the produced paths, as well as the time it took to
compute them. The results are shown in Table 1 below.

A* Results
Navigation Target Computation Time Path Length
Point 1 58.7 80.9
Point 2 62.2 80.4
Point 3 149 209
RRT* Results
Navigation Target Computation Time Path Length
Point 1 1.05 84.86
Point 2 1.37 120.2
Point 3 1.39 23.7

Table 1: Experimental results of two path planning algorithms. Both algorithms used the same set of points

We can see from the data some clear trends. Firstly, we notice that RRT * runs in mostly constant time, regardless of the particular point it is
navigating to. This makes sense in the context of the algorithm: RRT* generates and processes a fixed number of points, so the process
should take the same amount of time.

Ax, on the other hand, has a significantly more variable runtime. With reasonable confidence, we can notice that runtime scales linearly with
the final distance of the path. This also makes sense in the context of the algorithm; Ax exits as soon as it finds the optimal path to the
destination point. Before then, the algorithm will have to search a number of points proportional to the path length, which will take a runtime
proportional to the path length.

We now compare resultant path lengths; A% produces shorter paths in every case. This is expected; Ax is guaranteed to produce optimal
results for its cost function. RRT *, for comparison, is a random algorithm that does have guarantees on its runtime, but gives up its
guarantees on path length. Furthermore, while not documented here, RRT ' will generate paths of different lengths every time it is run. It is
not deterministic. In the cases above, A* produced paths that were on average 10% shorter than RRT *.

Pure Pursuit Evaluation
[Ishita]

The goal of pure pursuit was to help the robot follow the path that it received from the path planning algorithm. Thus, to evaluate this , we
recorded the absolute error of the robot’'s path (current position - intended position on the map). We recorded error as the robot ran three
different paths, and also tested for three different speeds. For the most part, the error recorded is low, indicating that the pure pursuit worked
well. However, we see large error occurring when the robot makes turns at high speeds, indicated by the spikes in the graph below. This error
is caused by localization, because our robot goes off its predicted position, and the change is too fast for localization code to work well. After
much experimentation, we've determined that it seems to be our localization code that is the issue. In addition, with the true odometry
location, the plots should turn out similarly to what the low speed plots looked like. The three graphs from our resulting data are shown below.

0.5m/s

Absolute Error (m)
[=]
o
N

0 5 10 15 2'0 25 30 35 40
Time (s)

1.0 m/s

10 4

0.8 4

0.6 1

0.4+

Absolute Error (m)

0.2 1

0.0 1

2.0m/s

10 A1

0.8 1

0.6 1

0.4 1

Absolute Error (m)

0.2 1

0.0 1

0 5 10 15 20 25 30
Time (s)

Figures 7,8,9: Graphs of pure pursuit error over time. Notice the significant jump in error when the car was turning. In addition, note
that the y-axis for the first graph is much different than the other two.

Hardware Performance Evaluation

[Carolina]

As a final step in this project, we evaluated the performance of our path-finding and path-following algorithms together on the physical robot.
To integrate the code, we simply ran the launch files for RRT'* (since it showed better performance than Ax in simulation) and pure pursuit
simultaneously, and published points to the robot using destination_pub.py. We ran the robot using the same goal node, but we changed the
speed for each trial (0.5, 1 and 2 m/s). All of the types of error logged during the simulation trials for path-finding and path-following were

logged during these trials as well — we recorded the total distance of each path, the time it took the robot to complete the path, and the
absolute error over time.

0.5m/s

Absolute Error of Car from Trajectory Simulation at Speed 0.5

0.12 1

=4 o
o =
@ =]

Absolute Error (m)
o
o
[}

0.00 1

00 25 50 75 100 125 150 175 200
Time (s)

1.0 m/s

Absolute Error of Car from Trajectory Simulation at Speed 1.0

0.35 1

Absolute Error (m)

(= =] S o o
[[N N w
o v o (%] o

o
o
]

0.00 1

0.0 25 5.0 75 100 125 150 175 200
Time (s)

2.0m/s

Absolute Error of Car from Trajectory Simulation at Speed 2.0

0.14 1

0121

Absolute Error (m)
(= (=4 =]
o o [
[} (=] o

o
o
-

o
o
~

0.00 1

00 25 50 75 100 125 150 175 200
Time (s)

Figures 10,11,12: Graphs of the absolute error (car position - trajectory position) over time for trials at 0.5, 1.0 and 2.0 m/s. The first
two plots also indicate a shaded error region, as multiple trials were conducted at these speeds.

Time and Path Length in Hardware Evaluation at Different Speeds

Speed Avg time (s) | Avg path
(m/s) length (m)

0.5 52.55 26.24

1 39.44 25.72
2 32.66 25.55

Looking at our absolute error plots, we can see that our robot’s error is fairly low at a speed of 0.5m/s, ranging from 0 — 12 cm with an
average of about 6 cm. However, as we increase the speed, our error increases, peaking at 14cm and 35cm at one point at a speed of 2m/s.
In terms of speed, we can see that our robot clearly runs similar-length paths slower at 0.5 m/s — dividing the path distance by the run time
yields about 0.499 m/s. However, there is not a significant difference (only about 7 seconds) between the car running a path essentially the
same length at 1m/s and 2m/s. If we look at the distance over time for both trials, we see the average speed of the car was 0.65 m/s and 0.78
m/s, which are 65 and 39 of the set speeds, respectively. This reduction in speed is due to the curvature of this path — in our pure pursuit
code, we adjust our speed to handle turns safely, and so even with a higher given speed, there is a limit to how fast the robot can be at any
point due to the curvature of our path. However, as established from individually evaluated pure pursuit and RRT ', there is room for
improvement in both algorithms, as well as in our localization code, that would lead to a better combined result and would enable us to reach
higher speeds.

Conclusion
[Quinn B]

This lab represents the most complex combination of systems we have yet implemented. We first implemented two solutions to the problem
of path planning. We found paths with a search based algorithm, A*, and a random sampling based algorithm, RRT'*. Because of the
significantly better runtime, we chose to use RRT '« for future path planning. Newly armed with both path planning and localization
algorithms, we could now implement a pure pursuit controller, to drive the car along RRT * ’s generated path. When testing the combined
system, we found that our path planning algorithms worked equally well in simulation and in hardware, but that our robot was less able to
follow trajectories in hardware than in simulation. After much debugging, we narrowed down the culprit to our localization algorithm. This part
of our software stack requires tuning or replacement in the future, before it can be used reliably in the final competition. Like our robot Dizzy,
we look forward to the race!

briar

