
Lab #3 Report: Wall Follower

Team #6

Natalie Muradyan
Tiffany Horter
Nisarg Dharia

Andrew Manwaring

6.141 - Robotics: Science and Systems

March 4, 2022

1 Introduction - Natalie Muradyan

In recent years, autonomous cars have become more popular and gained higher
demand. Many companies have explored the idea of self-driving cars, and there
are already some models of cars that can drive in the streets with no assistance.

In this lab, our team explored some of the key concepts in autonomous driving.
Our goal was to design a car that could safely follow a wall without external
control.

In the previous labs, we have already designed a simple wall follower that, given
a side (either left or right) and a distance, ensures that the car follows the wall
on that side and keeps the specified distance from it. For lab 3, our first chal-
lenge was to integrate the code from the last labs and implement it on the actual
car. This task turned out to be particularly tricky for our team since our car
operates a Velodyne LiDAR, which was both shifted by around 90◦ and also
did not get data from objects within 0.5 meters. Therefore, we modified the
codebase a lot and tested it on the car to make sure we were getting accurate
data to follow the wall.

The second challenge of the lab was designing a safety controller. The idea is
that before adding complicated algorithms and testing on the car, it’s important
to have a way to avoid crashes. Since our car costs more than $4.500 and simi-
larly real-life autonomous cars are quite expensive, and hardware malfunctions
can hinder testing and distort the data, such a safety controller is essential to
the design. Our team had two main ideas to approach the problem: the sector

1

method and the curved line method. These methods helped us parse the data
received from the Velodyne LiDAR and identify any obstacles that could lead
to crashes. After testing both methods, our team decided to pursue the curved
line method as it was less conservative.

This lab introduced many interesting ideas that we see in the current self-driving
cars. It reminded us to not only think about performance but also ensure fault
tolerance.

2 Technical Approach

2.1 Pre-processing Scan - Tiffany Horter

Velodyne LiDAR Difference from Simulation

As our team’s robot had a Velodyne LiDAR, there were discrepancies between
the LiDAR scan that worked in simulation and the LiDAR results we received
on the robot itself which affected the ability of the robot to understand its
environment. One such difference is that the Velodyne LiDAR was mounted
at a 90 degree angle from the expected 0 degrees pointing forward as shown in
the figure below, causing the scan angles to be off. The red arrow on the right
represents the LiDAR’s expected 0 angle, while the simulation’s expected -90
to 90 range are represented by a red half-circle above the puck on the right.

Figure 1: Velodyne schematic showing angles

Another challenge with the real LiDAR data was that the Velodyne LiDAR
scans slower than the /scan topic that publishes the data. As such, some of
the data for each scan would come back as infinite as there had not been time
to scan through the entire range of the scan. In addition, all distances for the
LiDAR were doubled and the Velodyne LiDAR in our testing was unable to

2

see any object within 45 centimeters of it. These differences were a significant
challenge for our team to resolve as the majority of the team’s time was spent
debugging the LiDAR data. This is another example of the overall robotics
challenge of making the simulation code and reality work together.

Resolving the differences through pre-processing the scan data

To solve these challenges, we decided to publish a new pre-processed node of
that scan data so that the robot would have accurate and understandable in-
formation about its environment. To do this, we took in the scan data of the
“/scan” topic which contained the LiDAR data and performed several transfor-
mations on that data to resolve the issues enumerated above.

We fixed the issue where the scanner did not have time to complete a full ro-
tation by combining two scans. By keeping the prior scan and every other
time a scan was received conservatively combining the two scans by taking the
minimum range of the two scans, we were able to retrieve a scan range that
corresponded to the full scan. In addition, we fixed the doubled distances in the
original data by halving the values of the range measurements for each element
of the LiDAR scan. We also performed minor data cleaning by removing the
remaining infinite distance points to eliminate those that were simply too far
away or too reflective for the LiDAR to detect correctly.

To fix the issue with the skewed angle, we chose to transform our data to match
the angle ranges we expected from the simulation. First, we created a new
message type to store the angles as well for clarity and the ability to have a
non-consecutive set of scan angles. Then, the angles were transformed accord-
ing to the following relation to shift the 0 angle to the front of the car and have
all angles be in the range from [-pi, pi]:

θ = θ − π/2

if θ < −π then θ = θ + 2 ∗ π

After this transformation, we resorted the data by angle to more easily be able
to slice the LiDAR scan data in the future. Finally, we published this processed
data to a new node to use in all subsequent programs, such as the wall follower
and the safety controller.

By preprocessing the data, the conflict between the robot’s input and processing
that worked in simulation was resolved, improving our ability to understand
where the wall is.

2.2 Safety Controller - Nisarg Dharia

In order for our racecar to be usable in a wide range of scenarios, we needed
to make sure it was able to keep itself out of harm’s way. As such, we devel-

3

oped out safety controller with the purpose of preventing collisions between our
racecar and any obstacles in it’s path. To execute this effectively, we broke
the process down into 3 steps: projecting the path of the racecar, scanning for
obstacles along this path, and reacting appropriately depending on the nature
of the obstacle. In doing so, we were able to make a safety controller that was
robust enough to protect the vehicle, without being so restrictive as to limit the
racecar’s abilities.

Projecting the Path

Our team knew that we wanted our safety controller to look both directly ahead
of the racecar and to the side in which the car was turning, if applicable. Thus,
our initial approach was to draw two straight lines, one from either side of
the robot, and look for any obstacles within this sector. The first line would
be straight ahead from the wheel located opposite the turning direction of the
racecar, while the second line was angled proportional to the steering angle, as
illustrated in the figure below.

Figure 2: Before (left) and after (right) of the racecar’s scanning area while
executing a turn

However, we quickly realized that this method was too conservative, as there
were many occasions where the car was already turning away from an object,
but would still stop due to the scan directly ahead. Figure 2 shows an example
of this, as the turning racecar would have stopped when sensing the wall directly
ahead (shown on the left), even though it’s turn would have safely avoided the
wall had it continued (shown on the right).

In order to fix this issue, we developed a new method that projected a more
exact path of the car based on it’s steering angle. First, we used the equation

R = L/tan(θ) (1)

4

to determine the car’s turn radius, where L is the length of the racecar’s wheel-
base and θ is the racecar’s steering angle. Once computed, we used this turn
radius to determine the circular path that the car would follow if the steering
angle remained constant, given by

x2 + (y +R)2 = R2 (2)

where using the y+R term offset the circle by it’s radius, putting the car along
the edge of the circle rather than at it’s center. Finally, the Ackermann drive
stamp calculates steering angle from the middle axis from the car, so we offset
the turn radius by 25 cm on either side to account for the width of the car,
giving the equations

x2 + (y +R)2 = (R+ 0.25)2 (3)

x2 + (y +R)2 = (R− 0.25)2 (4)

As a result, we were able to project the path of the right and left wheel inde-
pendently, as shown on the left of the figure below.

Figure 3: The racecar uses it’s turn radius to determine the circular path it’s
on (left), and projects this path onto the area in front of it (right)

As indicated in the image on the right of figure 3, this new approach no longer
suffered from the overly conservative stopping issue as the first approach, but
was still able to look for obstacles straight ahead and on the turning side of the
racecar as desired.

Scanning for Obstacles

Once we had our racecar’s path projected, we needed to scan for any obstacles
along this path. To do this, we first filtered our LiDAR scan data to only look
at points between −π/2 and π/2 radians, since points outside of this range are

5

located behind the car and would not be a collision risk. For each of the re-
maining points, we then converted the data from polar coordinates to x and y
values. Next, for each x value we calculated the corresponding y value of the
left and right lanes by plugging the x value into equations (3) and (4). Finally,
we checked to see if the y value of the data point fell in between the calculated
y values of the left and right lanes.

If the data point was not in between the lanes the point was ignored, as it was
not in the path or the racecar. However, if the point did indeed fall between the
lanes, then it was tested for one final distance check. In this check, the straight
line distance between the racecar and the point was compared with the safety
protocol distance, calculated as

safety distance = 0.3 ∗ velocity2 + 0.5 (5)

If the point was closer than this calculated distance, the racecar deemed an
obstacle to be in it’s path and the safety controls were triggered. (Note that the
safety distance contained a velocity squared term as stopping distance scales
with the square of velocity, as well as a minimum stopping distance of 0.5 me-
ters, which was approximately the minimum range of our LiDAR).

Reacting to Obstacles

If an obstacle was detected, we needed to respond to avoid a collision. Initially,
we decided to simply set velocity to 0, but we noticed that in some scenarios we
just wanted to slow down, not stop. In particular, if an object was moving along
at a constant speed in front of the car, we would want to maintain distance from
the object at a steady speed instead of constantly switching between stopping
and full speed. As a result, we decided to scale speed down when an obstacle
appeared, and then scale back up slowly as it disappeared. This was done by
slowing down the car according to the equation

new velocity = 0.5 ∗ current velocity− 0.1 (6)

and then speeding back up when an obstacle was no longer in range according
to the equation

new velocity = current velocity + 0.2 (7)

Through the use of these two equations, we were able to still stop fast enough
to avoid collisions with stationary objects, while also being robust enough to
slow down and follow mobile obstacles.

2.3 Wall Follower - Andrew Manwaring

In a first step of gaining a broad understanding of its environment, the racecar
was tasked with identifying and following walls. The goal of the wall following

6

node is to find, map, and track a path in the racecar’s environment at user
input of desired distance away from the wall and side of tracking. Our imple-
mentation uses on carefully sliced and linearly regressed ranges of the previously
mentioned processed scan data from the Velodyne LiDAR system on-board our
vehicle. These ranges are used to obtain a minimum distance to the front wall
and side wall. If the front wall is not blocked, the racecar will maintain de-
sired distance from the side wall using a PD controller. A blocked front wall
will cause a hard turn to continue wall following on the correct side.

Slicing Scan

The wall follower subscribes to the processed scan data, feeding the data into
the wall follower function. The processed data is initially stripped to the rele-
vant slices, notably the side and front slices of the racecar are saved, as shown in
figure 1. These scan slices are used to inform the racecar’s next drive commands.

Figure 4: front and side slice visualization for a vehicle tracking the wall from
the left side

The car scans the side starting at ± 30 degrees from the +x axis in the front,
and looking back to ± 106 degrees, spanning a total area of 76 degrees of its
side. It is important that the racecar looks slightly ahead to predict the wall
ahead, while still looking behind to correct the robot if it is pointed away from
the wall. In the front, the car scans from -6 to 6 degrees, obtaining a narrow
but telling view of the car’s future. The front slice remains narrow to avoid wall
detection in the front when the car sees an object to it’s side.

7

Finding minimum distance to wall

After cutting up the scan, the sliced ranges are filtered, and fed into a linear
regression to output the minimum distance within the slice to the car.

Figure 5: the steps of slice processing in order to measure the minimum distance
to a wall in our wall follower implementation

Starting with the filtering (step 2), all ranges over 2 standard deviations away
from the mean range are removed to remove noise, mostly encountered in the
simulator. Also, any point that is over 3· desired distance is removed. This
allows the racecar to drive past doorways or small openings in the wall without
turning into the room. If this filters out all of the data, then the racecar is quite
far from a wall, so the distance filter allows data up to 10· desired distance to
pass through, so that the racecar can try to recover its path. The front wall
does not get filtered in this way because we only car about the front wall if the
distances are small.

Next, both the front and filtered side slices are converted from polar to Carte-
sian coordinates for linear regression (step 3). This further smooths out noise
that may be present in the scan data. In an ideal world, the distance of the
car to a wall would just be the minimum point of a scan, but noise in the data
would cause significantly smaller distances to be reported if that method was
used. Linear regression allows for a trend in the data points to be found for
estimating the distance of the car to the wall. Using numpy module’s polyfit, an
equation is found for the front and side walls. These line equations are passed
into the closest point on a line equation to get the minimum distance between
the walls and the car (step 4).

8

Following the wall

If the front distance is below a threshold, then the car needs to begin its turn at
max turn angle in the opposite direction of tracking to continue wall following
on the correct side. This threshold is desired distance + 0.3 · speed, so that as
the car’s speed increases, it begins turning earlier to compensate. If the front of
car is clear, then the car begins the PD control. The PD controller was found

Figure 6: the basic PD Controller design found in our wall follower implemen-
tation

to be plenty sufficient for the control necessary to follow walls. In the above
figure, the error is calculated as the side distance to the wall - desired distance.
This provides a negative error if the car is too close to the wall and positive if
too far. This allows for the errors to map directly to the steering angle when
multiplied by a factor of -1 for left side and 1 for right side tracking.

The derivative of the error in the PD controller is approximated using the error
in the previous scan and the amount of nanoseconds that have elapsed since
the previous scan. Accordingly, the derivative must be multiplied by a factor
of 10−9 to return the error to helpful numbers. With the error and derivative,
a kp=0.5 and kd=300 were settled upon. This lead to regular steering angles
between -0.34 and 0.34, only exceeding these max turn limits in instances of ex-
treme error. Otherwise these variables scaled the PD out nicely between these
angles.

With a steering angle calculated, a AckermannDriveStamped type message is
published to the .../nav 0 topic. This way any command published by the wall
follower can be overwritten by the safety controller or the human operator hold-
ing the controller. When the car is placed in an area where it can see the desired
wall, this implementation allows for effective tracking of the wall on the desired
side at a set desired distance with at varying speeds.

9

3 Experimental Evaluation

3.1 Safety Controller Evaluation - Natalie Muradyan

We had two stages of testing: in simulation and real life. We also divided
our tests into subcategories to make sure we covered the full range of possible
situations our robot could be in. Here are the categories we used when testing.

• No obstacles, going straight.
In this test, we aimed the robot parallel to the wall with no obstacles in
front to check if the safety controller records any false obstacles and stops.
In the simulation, we let the robot go over the whole room, and it did not
stop or record any false obstacles. In real life, we let the car drive around
a long hallway with no obstacles, and our controller again did not record
any obstacles.

• No obstacles, going at an angle towards the wall.
For this test, we aimed the car toward the wall at an angle to see if it
would interpret it as an obstacle or know it could avoid crashing. When
running our curved line method, our car successfully recognized that it
would turn away from the wall, and it did not stop. In real life, we used
the lid of the box as a wall to ensure our robot would not crash into a
wall in case things went wrong, and we aimed the robot at an angle. Our
robot was able to recognize that it could avoid hitting the wall by taking
a turn instead of stopping, and the test was successful.

• No obstacles, going away from the wall.
In this case, both in simulation and in real life, our robot was able to find
the wall quickly and, instead of stopping, start following it.

• Unavoidable obstacles. For this test, we tried adding obstacles that
the robot could not avoid hitting while it was running. In the simulation,
we let the car go directly into a wall, and it would recognize that there’s
a wall and stop. In real life, we were able to test a wider range of things.
We first added obstacles in front of the car, and it would stop. Then
we removed the obstacles to see if it would recognize that and continue
following the wall. Our robot passed these tests multiple times.

• Avoidable obstacles.
This test case is very similar to the ”going at an angle towards the wall”
test case since they essentially test the same thing: whether the robot can
recognize it can turn instead of stopping. The difference is that in real
life, we did some more tests with adding objects spontaneously and seeing
how the robot handles them. For example, we added a brick in front of
the car at an avoidable distance, and it didn’t stop but instead bypassed
the brick. We tried doing this with multiple objects and distances, and
all our tests were successful.

10

3.2 Wall Follower Evaluation - Andrew Manwaring

In a large room or simulation it is easy to see that the wall follower is maintain-
ing the set distance from the wall, but when comparing between simulation and
reality in a small room, the qualitative performance is hard to determine. Our
team developed a few tests and metrics for evaluating performance based on the
robot’s perceived error. There are shortcomings with this approach, however it
remains useful for comparison of simulation to reality.

Our main metric for comparing this error was designed based on the scoring
for RSS Lab2. Our team uses a calculated error score out of 1 to gauge the
performance of the wall follower, with a numbers closest to 1 the most accurate.
At each call to wall follower’s callback function, the error is added to a total
error metric, and divided by the number of callbacks to obtain an eavg. The
following is the equation for error percentage:

epercentage =
1

1 + e2avg

To compare the simulation and reality, a test was run on similar areas in a
room and simulation, allowing for side-by-side comparison of percentage error
and actual error at turns. Additionally, the error was graphed concurrently, as
these paths were taken. Below figures are the two paths taken by the simulated
racecar and racecar along with their respective error graphs. Due to constraints
of the physical space, the test was run at a speed of 0.6.

Figure 7: The path simulated path taken by the racecar, along with it’s error
along that path. The error percentage was of the simulation along this path
was 0.981.

11

Figure 8: A floorplan of the real life path taken by the raceca, along with it’s
error along that path. The error percentage was of the racecar along this path
was 0.941.

A few notes are apparent from comparison of the simulated and real racecar in
figures 7 and 8. First, both the simulated and real racecar have respectably high
error percentages. This demonstrates capability of our wall follower implemen-
tation both in simulation and reality. Additionally, the error on the physical car
is much smoother than on the simulation, highlighting a major difference be-
tween the simulation and physical world - the wheels can not change direction
instantly. This leads to slower reactions to corners and overall step response
time. It follows that the performance of our racecar in reality is worse than the
simulation due to these slower reaction times and differences in tuning between
the physical world and simulation.

Wall follower was evaluated in a number of other qualitative ways as well. For
instance, we ran multiple tests on the car at varying speeds. We found as the
speed increased as high as 3, the car had much greater error around corners and
occasionally lost the wall for some time. In the future we would like to mitigate
this by tuning the PD variables and angle slices for higher speeds. The racecar
was tested repeatedly to reach the working form currently, and in these tests
we honed in on the significant disadvantage of the Velodyne LiDAR’s minimum
distance. With a minimum distance of 0.5m, the team had to set our desired
distance to 1m or greater to allow for the safety controller to run without inter-
rupting the wall follower. This meant that the car needed to be tested in large
spaces. The team also hopes to improve the car’s ability to navigate through
tighter spaces in future evolutions of the racecar.

The wall follower performed well in both simulation and reality. The simula-
tion’s error percentage was notably better than the physical racecar, but this

12

tracks with the physical racecar’s time to turn wheels and change speed.

4 Conclusion - Tiffany Horter

Through this lab, we were able to drive the physical car through tele-op, imple-
ment our wall follower code from simulation onto the real robot, and create a
safety controller which stopped the robot when it was at risk of crashing. We
achieved a high accuracy for the wall follower in simulation of 98.1% and 94.1%
on robot. For our safety controller, it successfully prevented crashes in all tested
situations. Both the wall follower and the safety controller were highly effective.

There are still several improvements that could be made to improve the per-
formance of this phase, such as tuning. To improve wall follower accuracy,
continued tuning of the parameters would help eliminate the “wiggling” of the
robot as it tries to maintain a constant distance from the wall. One hardware
related limitation that likely cannot be fixed for the wall follower is the range
is limited at close range to seeing objects that are greater than 45 cm away.
To allow the wall-follower to work at distances closer than 0.5 m, we would
probably have to change the LiDAR. In the next design phase, we will be able
to use computer vision instead to detect closer objects and follow a line.

5 Lessons Learned

5.1 Andrew Manwaring

Throughout this lab I learned the importance of starting early and testing often.
Our team started our work on the code early and continued to refine it, how-
ever, we did not begin robot testing until we felt that it was perfectly running
in simulations. If we had tested the two concurrently, we would’ve discovered
bugs early and they would’ve been much easier to troubleshoot rather than
switching back between the model and script. This is also a lesson in team work
as it would have allowed more members to work on a challenge at the same time.

Additionally, I learned more about the ROS debugging system and about how
to spot bugs more quickly. Processes like rospy.loginfo and quick publishers did
the trick of finding those hidden errors. The only applicable prior knowledge I
have had from before this class was Python and control feedback loops. I have
learned so much about Linux, github, and ROS, so with each lab I am gaining
a lot of proficiency in these topics.

In creating our brief, I saw how much our performance improved as we ran
through the slides more and more. We honed in on what we wanted to say,
eliminating time wasting fluff.

13

5.2 Nisarg Dharia

This lab helped me refine numerous technical skills necessary for a wide range
of application in robots. For one, my familiarity with frameworks such as ROS
and packages such as Numpy improved significantly, as I was able to research
and incorporate a number of features into my code. Among these were the use
of message filters in ROS to subscribe to multiple topics at once, as well as the
use of masks in numpy to filter arrays quickly and efficiently. In addition, I also
learned a lot about various pieces of hardware and some of their limitations. In
particular, I was educated on how our Velodyne LiDAR worked by sending out
lasers and measuring their return time to calculate distance, and how it’s rota-
tion rate being slower than the /scan topic’s publishing rate led to incomplete
data.

I was also able to identify some areas of improvement as a teammate. Specifi-
cally, our initial delegation of tasks was done hastily and without foresight, and
led to some dissatisfaction among teammates later in the lab. In the future,
I hope to be more involving of teammates and forward thinking when making
these decisions to avoid conflicts and keep the team satisfied.

Most importantly though, on the intangible side of things, this lab reminded
me how important it was to be persistent when facing large and complicated
problems. There were numerous times where something broke or went wrong,
and I often felt compelled to give up and make excuses. However, thanks to
my teammates and some looming deadlines, I was able to persevere and was
rewarded with the wave of satisfaction when everything finally worked.

5.3 Natalie Muradyan

After this lab, I refined some of my technical skills. I learned many things that
were very specific to the lab, such as how to debug the robot when it doesn’t
connect, but also some things that are helpful in other areas, like different ap-
proaches to detecting obstacles, designing a website, etc.

I also developed some soft skills and some non-technical skills. I refined my
skills in designing presentation diagrams, graphical representation, and making
more appealing slides.

Overall, this lab was very creative and helped me think about how autonomous
machines work and what goes into the process. It is very interesting to see the
whole process of designing a car, and of course, things start from testing and
safety.

14

5.4 Tiffany Horter

From a technical point of view, this lab taught me a great deal about ROS and
reinforced my understanding of Numpy through all of the matrix manipulation
required to interpret the data. I also learned about more about how to im-
plement control theory and utilize LiDAR technology. Beyond that, I became
familiar with the differences between simulation and reality. One major lesson
that I learned was the importance of testing on the robot early in the process –
many of our issues came from only implementing for simulation in the beginning
and then much later discovering that the robot interpreted its input differently
or there were unaccounted-for errors on the physical robot.

In working on the communication aspects of this class, including the briefings,
I have been working on brevity. This has been a constant challenge for me,
and having a hard 8 minute cut-off provided excellent motivation for keeping
the briefing brief. In addition, I worked on integrating the new method of
designing slides mentioned in class into my typical workflow. While at first it
was challenging, especially adding full sentences to the top of slides, I believe
that now my slides are more understandable to my audience. Breaking up the
project into smaller chunks would have helped to collaborate more easily and
prevent the silo-ing of knowledge between areas of the project.

6 CITATIONS

VLP 16 User Manual (left side of Figure 1 found on pg 30)

15

https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf

	Introduction - Natalie Muradyan
	Technical Approach
	Pre-processing Scan - Tiffany Horter
	Safety Controller - Nisarg Dharia
	Wall Follower - Andrew Manwaring

	Experimental Evaluation
	Safety Controller Evaluation - Natalie Muradyan
	Wall Follower Evaluation - Andrew Manwaring

	Conclusion - Tiffany Horter
	Lessons Learned
	Andrew Manwaring
	Nisarg Dharia
	Natalie Muradyan
	Tiffany Horter

	CITATIONS

