
Lab #5 Report: Localization

Team #6

Tiffany Horter
Nisarg Dharia

Andrew Manwaring

6.141 - Robotics: Science and Systems

April 1, 2022

1 Introduction - Tiffany Horter

The goal of this lab was to develop a working implementation of localization for
our racecar when given an initial position.

Localization is important to enable a higher level planning activity. If the robot
does not know where it is, it can only react to its environment and cannot plan
out its actions. To accomplish the end goal of creating a self-driving car, the
ability to understand where a car is located in the map will allow for directions
to be given to the car such as “drive to the mall” as the robot will now have an
understanding of where it is in the world and where relative to that is its’ end
location.

To achieve this goal, we implemented Monte Carlo Localization to accurately
determine the current pose of the robot. In order to implement the algorithm,
we created a motion model and a sensor model and combined the two to cre-
ate the final particle filter. The motion model uses the odometry data and the
previous location to project the new location of the robot. As odometry data is
inherently noisy, we added additional noise to account for possible imperfections
in the data. The sensor model takes in the observed data from the lidar as well
as the different particles and returns the probability of the robot being located
at each particle. The particle filter combines these two models to determine the
pose of the car and therefore localize the car, by weighting the particles from
the motion model by the weights of the probabilities from the sensor model.

Through this lab, we explored the application of probabilistic models for deter-
mining the location of the robot and evaluated the performance of our Monte

1

Carlo implementation.

2 Technical Approach

2.1 Motion Model - Nisarg Dharia

Given the previous pose estimates of the racecar and a set of odometry data,
the motion model’s goal was to predict the new possible locations of the car.
This was done by first converting the odometry data from the robot frame to
the world frame and adding it to the previous pose estimate particles, and then
incorporating some randomness to offset any noise in the odometry data.

Rotating the Odometry
Because the odometry data was given in the frame of the robot, the first step was
to convert it into the world frame. For each particle i, we took the orientation
θi and used it to build the rotation matrix

Rw
r =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(1)

From this, we then took the particle’s previous position (xi, yi) and the change
in position from the odometry (∆x, ∆y) to calculate the new position (x′

i, y
′
i)

of each particle as [
x′
i

y′i

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

] [
∆x
∆y

]
+

[
xi

yi

]
(2)

Lastly, to get the new orientation of each particle, we simply added the previ-
ous orientation θi to the odometry’s change in orientation ∆θ to get the new
orientation θ′i as

θ′i = θi +∆θ (3)

Adding Randomness Once we had the updated location of each particle
(x′

i, y
′
i, θ

′
i) we needed to add some randomness to account for noise in the odom-

etry measurements. This was done by sampling an independent random value
for the x, y, and θ components of each particle from a Gaussian distribution
and adding it to the corresponding particle’s pose. Given these random values
rx.i, ry,i and rθ,i, the final pose of each particle would then bexi”

yi”
θi”

 =

x′
i

y′i
θ′i

+

rx,iry,i
rθ,i

 (4)

Note that for each of the random values added, the Gaussian distributions were
centered around 0 so as to not favor any particular directions. However, choosing
the standard deviations was more difficult, as we found that as the odometry

2

noise took on greater values, the standard deviation needed to increase as well.
For the real car, we tested a range of values between 0.001 and 0.1 for all three
directions (x, y, and θ). Ultimately, we used anecdotal evidence to determine
that a standard deviation of 0.04 worked best in the x and y directions, while
0.03 performed best for the randomness in θ.

2.2 Sensor Model - Tiffany Horter

The goal of the sensor model is to develop a model of the probability that our
car is in each particle’s location. To do this, the sensor compares the scan data
and the “ground truth” scan values of the ray-traced particles to determine the
probability at each location. Essentially, the probabilities represent the fit to
the observed lidar scan from each simulated scan from sampled particles.

Precompute sensor model table
Since it would be computationally expensive to recompute the probability of
each scan as it comes in, we precomputed a table for the sensor model to be
able to lookup the probability of measuring any given discrete distance for all
distances the robot or simulated scans measure. To create the table, we made a
2D array with rows representing ground-truth values and columns representing
observed distances, both ranging from 0 to the maximum scan value which we
defined as 200. The probability of a given scan from an observation is deter-
mined by combining four probability scenarios detailed below, where zk is the
ground truth value, xk is the hypothesis pose, m is a given map, zmax is the
largest scan value, d is the observed distance, and σ is one of the scaling con-
stants:
- (1) One possibility is that there is an exact robot scan match to a known map
obstacle:

phit(z
(i)
k |xk,m) =

{
(1/

√
2πσ2) ∗ e−(z

(i)
k −d)2/2σ2

if 0 ≤ z
(i)
k ≤ zmax

0 otherwise

- (2) Another possibility is that it represents a measurement of the maximum
range:

pmax(z
(i)
k |xk,m) =

{
1 if z

(i)
k == zmax

0 otherwise

- (3) It is also possible that it is a shorter than ground truth measurement such
as an unmapped obstacle (like a bike) or interference from the robot:

pshort(z
(i)
k |xk,m) = (2/d) ∗

{
1− z

(i)
k /d if 0 ≤ z

(i)
k ≤ d and d ̸= 0

0 otherwise

- (4) Finally, it could also be a random signal:

3

prand(z
(i)
k |xk,m) =

{
1/zmax if 0 ≤ z

(i)
k ≤ zmax

0 otherwise

Figure 1: Probability distribution of the probability scenarios combined based
on ground truth values and observed distances.

The probability of any entry in the table is the weighted sum of the probabilities
of each scenario multiplied by their associated constant weight.

p(z
(i)
k |xk,m) = αhit ∗ phit(z(i)k |xk,m)

+ αshort ∗ pshort(z(i)k |xk,m)

+ αmax ∗ pmax(z
(i)
k |xk,m)

+ αrand ∗ prand(z(i)k |xk,m)

As the sensor model was performant with the default constant values of αshort =
0.07, αhit = 0.74, αmax = 0.07, αrand = 0.12, σhit = 8.0, we chose to keep the
constants as they were. As probabilities for a given distance should sum to 1 by
the rules of probability, we normalized the probability for the phit probability
scenario and each value of d (i.e. across each column) to sum to 1. Finally, to
maintain access to this table and only compute it once, we cached this sensor
model table.

Evaluate how likely each particle is given the observed scan
For a set of particles and an observed lidar scan, the sensor model evaluates
how likely each particle is to be the real location given the observed scan. Once

4

again, due to computational efficiency, we down-scaled the lidar data to 100
evenly spaced observation beams. To find the ground truth values, we then ray-
traced the sampled particles since straight line values should remain constant.
Then we scaled both the rays and the lidar to pixels by multiplying by the
map resolution * lidar scale to map scale and clipped the resulting values to
acceptable ranges between 0 and the largest scan distance. For visualization and
testing purposes, we then published the pixelized lidar scan to understand what
the robot was seeing. Because the values in the lookup table were discretized,
we rounded lidar and scan to access the correct entry in the table. Then, iterate
through all particles to find each one’s probability of being the actual scan
observed by multiplying the looked up probability of each beam at the given
particle and distance.

weight of particle =

n∏
i=1

p(z
(i)
k |xk,m)

Finally, we squashed the probabilities by raising them to the given power of
−1/2.2 to flatten the probability distribution.
With the probabilities of each particle that the sensor model returns, we can
use these as weights in the particle filter and therefore be able to determine the
actual location of the robot.

2.3 Particle Filter - Nisarg Dharia

The main goal of the particle filter was to combine the estimated particle poses
from the motion model and weights from the sensor model to determine the
approximate pose of the car. To achieve this, secondary objectives such as ini-
tializing the car’s location on the map and adding visualizations to better view
the localization performance were also necessary.

Initializing the Racecar’s Location
In order to begin localization, the car needed to know its approximate starting
position. This process began by first waiting for a map to load, and then waiting
for a pose to be selected on the map representing the car’s approximate starting
location. Once this initial pose was selected, the particle filter then generated
200 particles randomly distributed around this pose using a Gaussian distribu-
tion with mean 0 and standard deviation 0.5 to represent the possible starting
poses of the car. Each of these poses was given a uniform initial probability of
1/200. Note that higher numbers of particles were tested but hindered perfor-
mance too much to be usable. Finally, once this whole process was completed,
a flag was set to signal that the motion model and sensor model were ready to
begin running.

Updating Particle Locations
Once the particles were initialized, they were ready to have their locations up-
dated as the car moved throughout the map. To do this, every time a new

5

odometry message was received, the particle filter first extracted the linear ve-
locity in the x and y directions and the angular velocity around the z axis. Next,
it took the time difference between the current odometry message and the pre-
vious one and multiplied it by the extracted velocities to get the displacements
(∆x,∆y,∆θ). This displacement along with the current particle positions was
then sent to the motion model, with the resulting particle positions replacing
the current ones. Note that as a result of this process, the new particle poses
are more spread out to reflect the uncertainty in the car’s actual position, as
show in figure 2.

Figure 2: A spread of 200 particles displaying the possible poses of the car after
going through the motion model, with each red arrow representing a single
particle

Updating Particle Weights and Resampling After initialization, the parti-
cles were also ready to have their probabilities updated based on how accurately
each one would have matched the LiDAR data. Thus, whenever LiDAR data
was received, the scan was passed to the sensor model along with the particles in
order to have the particle weights updated. Given these new updated weights,
the particle filter then resampled 200 particles from the current set (including
duplicates), with the probability of a sample being chosen equal to it’s weight.
This process resulted in a much more clustered set of particles representing the
most probablistic poses for the car as shown in figure 3.

Determining the Average Particle Pose Given the locations and proba-
bilities of 200 possible poses of the racecar, the particle filter then needed to
determine what the single most likely pose was for the car. To do this, we first
considered selecting the particle with the highest probability of being accurate
based on the sensor model as the car’s most likely position. However, relying
on a single particle caused our average pose to jump around from particle to
particle, which resulted in an erratic sequence of poses. Our second approach
was to take an even average across all particles, but this again led to undesir-
able results. Specifically, it gave too high a consideration to particles that were

6

Figure 3: A cluster of 200 particles displaying the possible poses of the car
after going through the sensor model and being resampled. Note that the large
red mark in front of the car is actually 200 individual arrows representing the
particles

unlikely to be correct, skewing the average away from the real location. In the
end, the averaging method that gave us the most success was taking a weighted
average, where the pose of each particle was weighted based on the probability
that it was correct as given by the sensor model.

The weighted average approach had benefits over the max particle approach, as
taking the average gave a smoother transition of the car’s pose over time. It also
helped alleviate some of the issues with the even average approach, as the heav-
ier weights for the high probability particles meant that more consideration was
being given to poses that were more likely to be correct. However, one drawback
to this approach was that if we had a multimodal distribution of particles, the
pose determined would likely be somewhere in between the clusters making it
guaranteed to be incorrect. Thankfully, this didn’t occur often in our testing,
but it is certainly an area of improvement for the future.

Visualizations
In order to help with debugging and demonstrating correctness, we also included
a couple of visualizations. First, given the scan data from the LiDAR on the
real car, we published a copy of the scan with respect to our predicted location
for the car. This helped with debugging as we could then see where the real car
saw obstacles throughout time, and compare it to where the projected car was
seeing obstacles. If the scan lined up with the obstacles in the map, we knew
that the projected car’s location was approximately correct. Second, we also
wanted to visualize the spread of our particles to ensure they were exploring
an appropriate variety of poses. To do this, we published a PoseArray message
with a pose for each of the 200 particles we were keeping track of. This helped

7

us ensure that the amount of randomness added and frequency of resampling
were appropriate for keeping track of the car. Finally, we published a few error
graphs to visualize our car’s performance as discussed in section 3.

Figure 4: An image of the racecar’s projected pose in RViz with visualizations.
The white dots represent the laser scan seen by the actual car at the current
point in time, and align almost perfectly with the walls seen by the projected
car. The red cluster is a group of 200 particle arrows representing the possible
current locations of the car

2.4 Running Physical Racecar - Andrew Manwaring

Setup Error Due to an error and limited time to troubleshoot the racecar

Figure 5: Setup error message presented when running localize.launch, resulting
in the team using rosbags to test our localization

workspace, the group was unable to run the localization code directly on the
car in real time. After exhausting all troubleshooting notes posted, our team
decided to record a rosbag as a workaround to fully test the capabilities of our
localization. This was robust in predicting how the code would run on the actual
racecar because the rosbag recorded the same /vesc/odom and /scan topics that
the motion and sensor model would use in real time to localize the racecar. The
rosbags proved faster than real life testing could’ve been for debugging the
localization, a helpful lesson for the future.

8

3 Experimental Evaluation

3.1 Localization in Simulation - Andrew Manwaring

In the simulations, quantitative data was collected to demonstrate the capa-
bilities of our localization implementation. In the given localization tests on
Gradescope, the car was able to predict its location within an accuracy of 0.27
meters. The Gradescope tests provided the localization with odometry, scan,
and presumably map data. The car drove around in a loop, where it was com-
pared to the ground truth expected from the given data. The tests had an
average error of 0.262 meters, 0.270 meters, and 0.266 meters with increasing
odometry noise. The addition of noise progressively throughout the tests did
not have any affect on the performance of the localization, demonstrating ro-
bustness in the face of significant odometry noise. The output trajectory graph
vs ground truth and staff solution is shown in the figure 6.

Figure 6: Simulation trajectory generated in the highest odometry noise Grade-
scope test using our localization controller. The red trajectory, our solution,
nearly perfectly covers the ground truth, resulting in an average error of 0.266
meters.

In more of our tests on the simulation, the localization continued to perform
well. In simulation, the car was driven around some portion of the simulated
room using wall follower. The two tests consisted of inputing 0 and 0.1 as our
odometry noise parameter and measuring the distance and angle error between
the particle filter’s predicted pose and the ground truth. Each graph represents
the car’s distance and angle error as it moves along some portion of the wall
around the room. During this time, the car is constantly turning and correcting
to maintain its path along the wall. Figure 7 and 8 represent the distance and

9

angle error with 0 and 0.1 odometry noise, respectively.

Figure 7: The angle and distance errors in simulation with no odometry noise,
as the racecar ran wall follower.

Figures 7 and 8 demonstrate a similar level of error to the Gradescope tests, and
show robustness in responding to localization drift. The distance errors with and
without odometry noise hovers around 0.25 meters. We chose to show the angle
error as a signed quantity to indicate the direction of the error as it indicates
that the angle is oscillating around 0 degrees rather than drifting off to one side
in particular. The angle error showed significantly more noise, but stayed within
+/- 5 degrees the majority of the time, showing self-correcting behavior. In the
odometry noise angle error graph, the angle error hits -20 degrees, but corrects
itself back to nearly 0 degree error. This shows that the localization controller
is able to respond to drift and correct itself before the localization and ground
truth diverge. The odometry noise of 0.1 was considered to be larger than our
smaller X, Y, and θ variance could easily handle, so the similar distance and
angle error between the 0 and 0.1 odometry noise proved localization capability.

10

Figure 8: The angle and distance errors in simulation with very noisy odometry
(odometry variance = 0.1), as the racecar ran wall follower.

3.2 Localization on Racecar - Andrew Manwaring

The localization on the physical racecar was evaluated qualitatively using a
comparison of landmarks in the video of the racecar to the predicted location
in rviz simulator. Using the unique shape of the Stata basement, such as the
pillars and changing characteristics of the wall, the robot’s location on the map
in reality was easy to estimate on the Stata basement map. This was contrasted
with the pose displayed in rviz for the localized car location. Additionally,
the laser scan data from the car’s run lined up like a trace when the car had
localized it self well. With these methods it was determined that the car was
localizing itself within the Stata basement accurately. This was not perfect, as
was evident from drifts and offsets of the pose vs the actual location, however,
the localization was able to correct itself when entering more characteristic
areas, where each sampled location would have a very different scan. The link
below shows a syncronized video of the real time racecar driving video with a
simultaneous localization on a map, demonstrating our method for localization
performance evaluation.

11

Localization on Racecar Video

4 Conclusion - Tiffany Horter

As a result of this lab, our racecar can now identify its location on a map when
it knows its initial position. Our localization implementation was robust to
noise and performed well in the simulator across increasing scales of noise with
94.5%, 93.8%, and 94.3% percent accuracy respectively compared to the staff
solution. Since we ran into unresolvable hardware problems on the robot, we
came up with an out of the box solution - recording a rosbag to enable us to
complete the lab. Using this method, we were able to demonstrate that local-
ization would work on the car. On the car, through a qualitative evaluation of
relative landmarks in the simulated map and in real life, our localization was
fairly accurate – even when it experienced drift, once it found a more charac-
teristic and identifiable space it was able to correct itself. Therefore, both in
simulation and on the car, the localization was highly effective.

Several improvements could still be made to improve the performance of this
phase, such as running it directly on the car and continued tuning of parame-
ters. By tuning parameters such as the constants relating to the probabilities
determined in the sensor model, our implementation could more accurately de-
termine its location by relying on a closer estimate of where it is likely to be.
Some future work is to run this module on the car simultaneously as it is driv-
ing around to be able to implement the next design phase on the robot in real
time. In the next design phase, we will use the robot’s ability to ascertain its
location to implement planning of higher-level goals beyond simply reacting to
its environment.

5 Lessons Learned

5.1 Andrew Manwaring

During this lab I learned some helpful debugging tricks in ROS. The biggest
one there was the use of rosbags. Using the rosbag data, we were able to ”run”
the robot over and over without waiting to charge the robot or do a lengthy
setup. This allowed for the debugging process to be done much faster for this
lab and ultimately allowing us to tune our localization to work well. I also
continued to hone in on my numpy skills as we sought to improve efficiency in
our localization. The localization methods used in this lab, although taught in
lecture, were mostly unfamiliar to me. I learned thoroughly the algorithm that
we used to localize the vehicle.
Additionally, I learned more about working in a team. Throughout the first
few labs I have really enjoyed working with Tiffany and Nisarg and feel that
we have been productive while finding enjoyment in tackling these challenges

12

https://drive.google.com/file/d/1k-cE_OSA13tRex6GAsF_Iza3IGkFQA9e/view?usp=sharing

together. As we move on to new teams, I will certainly use a lot of the technical
and teamwork skills that my team members have taught me.

5.2 Nisarg Dharia

On the technical side, this lab was key at improving my skills with ROS while
learning about localization techniques. Regarding ROS, I was able to master
the use of rosparam to quickly tune parameters and gained experience with a
variety of visualization tools such as PoseArray, Odometry, and LaserScan to
help with debugging. In doing this, I learned more and more about how various
amounts of noise and scaling can impact the performance of a localization model.

This lab also helped me improve as a teammate both with sharing the workload
and communicating while integrating other people’s work. Specifically, with
only 3 people on our team we each had to do work independently from one
another to get tasks done in time, which helped me be a little more independent.
More importantly though, once we began combining our work I learned a lot
about how crucial clear communication is during the integration process to avoid
misunderstandings and delays.

5.3 Tiffany Horter

From a technical point of view, I developed an understanding of the localization
algorithm and the basics of probabilistic robotics. This lab also allowed me
to review my knowledge of probability and apply it to a real application. In
addition, I built on my numpy manipulation skills to eliminate the for-loops to
go faster. Once again, I learned that simulation is very different than reality
and that more time must be allocated to debug those differences.

For this lab from the communication perspective, I focused on how to better
present our error and consider what metrics would be most effective to indicate
our results. Additionally, I learned that while working together remotely, it is
important to communicate what you are working on so that multiple people
aren’t simultaneously writing the same code. I’ll miss working together with
Andrew and Nisarg – I think that we collaborated very well. The positivity
of my teammates always made debugging much more bearable. I will take the
lessons that we learned in terms of teamwork, especially our willingness to al-
ways jump in and help a teammate, to the next team I am working with.

6 CITATIONS

Localization README (Figure 1)

13

https://github.com/mit-rss/localization/blob/master/README.ipynb

	Introduction - Tiffany Horter
	Technical Approach
	Motion Model - Nisarg Dharia
	Sensor Model - Tiffany Horter
	Particle Filter - Nisarg Dharia
	Running Physical Racecar - Andrew Manwaring

	Experimental Evaluation
	Localization in Simulation - Andrew Manwaring
	Localization on Racecar - Andrew Manwaring

	Conclusion - Tiffany Horter
	Lessons Learned
	Andrew Manwaring
	Nisarg Dharia
	Tiffany Horter

	CITATIONS

